

Unbeatable fuel efficiency leading to limited CO₂ emissions

69g CO₂ per seat per km

-45% fuel burn

-4,400 tonnes CO₂ per aircraft per year

Ready for Sustainable Aviation Fuel

Already flying

with SAF blend up to 50%

100% SAF flight test performed

in partnership with ATR operator and SAF producer

100% SAF capability by 2025

for additional -80% CO₂ emissions

A good neighbor - clean & quiet

3x smaller noise footprint*

Compliant with latest noise standard (ICAO Chap 14)

-2x NOx

emitted during take-off & landing*

Limited airport infrastructure

Short, unpaved runway operations

* vs. similar size regional jets, 300NM, 2000 flights annually

Advanced navigation capabilities for efficient operations

-20kg fuel per descent

with advanced vertical guidance

Satellite-based guided approach

for shorter trajectory limiting fuel consumption

-50% CO₂ emissions

with optimised operations and biofuel blend fill

Reduced non-CO₂ effects

No contrail

formation*

Limited NOx

impact*

* Due to lower cruise altitude

A sustainable market positioning

Mainly point to point traffic

reducing CO₂ impact by 30% vs connecting flights

Serving thin traffic routes

complementary to high speed train network

